15342214292
您当前的位置:首页 > 新闻资讯 > 技术天地

企业宣传视频

新闻资讯

干货讲堂 | 变压器接法详解

更新时间:2024-12-30

       常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D 表示为三角形接线,“Yn”表示为星形带中性线的接线,Y 表示星形,n 表示带中性线;“11”表示变压器二次侧的线电压 Uab 滞后一次侧线电压 UAB330 度(或超前 30 度)。

       变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或 y)为星形接线,D(或 d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟 12 点的位置,二次侧的线电压 相量作为时针。

       “Yn,d11”,其中 11 就是表示:当一次侧线电压相量作为分针指在时钟 12 点的位置时,二次侧的线电压相量在时钟的 11 点位置。也就是,二次侧的线电压 Uab 滞后一次侧线电压 UAB330 度(或超前 30 度)。 

       变压器二个绕组组合起来就形成了 4 种接线组别:“Y,y”、“D,y”、“Y,d” 和“D,d”。我国只采用“Y,y”和“Y,d”。由于 Y 连接时还有带中性线和不带中 性线两种,不带中性线则不增加任何符号表示,带中性线则在字母 Y 后面加字 母 n 表示。n 表示中性点有引出线。Yn0 接线组别,UAB 与 uab 相重合,时、分 针都指在 12 上。“12”在新的接线组别中,就以“0”表示。
 
(一)变压器接线组别 

       变压器的极性标注采用减极性标注。减极性标注是将同一铁心柱上的两个绕 组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a” 或“•”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系, 采用时钟表示法。分针代表原边线电压相量,并且将分外固定指向 12 上,时针 代表对应的副边线电压相量,指向几点即为几点钟接线。 

       变压器空载运行中,Yyn0 接线组别高压侧为“Y”接线,激磁电流为正弦波。由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对 于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通 路,这样就增加了磁滞及涡流损耗;Dyn11 接线中,奇次谐波电流可在高压绕组 内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。同容量的配变空载 损耗 Dyn11 接线比 Yyn0 接线可减少 10%。

       负载运行中,若二次侧负载不对称,各项均有零序电流,其值为中线电流的 1/3,零序电流在配变铁芯中产生零序磁通,Yyn0 接线的配变高压侧没有零序电 流与之去磁,零序磁通在变压器铁芯柱中无通路,只能通过空气隙、箱壁、夹紧 螺栓形成回路,产生附加损耗,鉴于此,大容量变压器不宜采用 Yyn0 接线,最 大容量 1800kVA,并规定 Yyn0 接线变压器中性线电流不应超过低压侧额定电流 的 25%;Dyn11 接线中,一次绕组的零序电流可以在绕组内环流,反过来可削弱 二次绕组的零序磁通,不致使零序磁通造成配变的过热,因此中性线电流几乎可 达相线电流值(一般能达到相线电流的 80%),规程规定 Dyn11 接线变压器中性 线电流不应超过低压侧额定电流的 40%,所以 Dyn11 接线能使配变容量尽可能 得到充分利用,同时也降低了损耗,同容量的配变负载损耗 Dyn11 接线比 Yyn0 接线可减少 20%。

       对于供电质量来说,对于 Yyn0 接线的配变,由于二次零序磁通未被去磁, 零序阻抗大,因此零序电压也较大;而 Dyn11 接线中由于一次零序磁通的去磁, 使铁芯中合成零序磁通很小。据实测数据发现,同容量的配变 Yyn0 接线零序阻 抗比 Dyn11 接线大 8~10 倍.这样在同样的零序电流下,零序电压前者比后者大 8~10 倍,从而造成 Yyn0 接线配变中性点产生较大偏移,相电压不对称程度严重。

       当低压母线处发生单相短路时,由于 Dyn11 接线配变零序阻抗小,因此 yn11 接线要比 Yyn0 接线单相短路大得多,这样低压总开关过流保护的灵敏度也高得 多,对于高压侧,由于 Dyn11 接线低压单相短路电流对高压侧的穿越电流也大,当 高压侧过流继电保护兼作低压单相接地保护时,其灵敏度也比 Yyn0 接线大。尽管 Dyn11 接线有许多优点,但是两种接线组别的配变在农村低压电力技术规程 (DL/T 499—2001)中规定都是允许的。 

主变低压侧为什么要采用三角接法? 

       接成三角形是为了消除三次谐波。防止大量谐波向系统输送,引起电网电压 波形畸变。三次谐波的一个重要特点就是同相位,它在三角形侧可以形成环流, 从而有效的削弱谐波向系统输送,保证供电质量。还有零序电流也可以在三角形 接线形成环流,因为主变高压侧采用中性点直接接地,防止低压侧发生故障时, 零序电流窜入高压侧,使上级电网零序保护误动作。

       主变高压侧接星型,是为了降低线路的损耗和减小线路的电流及减少有色金 属和提高中性点接地等。低压侧接三角型是因三角型有三次谐波衰减作用。 

       低厂变高压侧接三角型就是为了防止三次谐波进入低压侧,对用电设备的危 害。励磁变高压侧接成 Y 型,低压侧接成三角形,原因:高压侧电压为发电机 出口电压,励磁变高压侧绕组接成 Y 型,相电压为线电压的 1/√3,变压器高压 侧的绕组可以按照相电压做,如果高压侧接成三角形,则变压器高压侧绕组要求 按发电机的线电压做,成本增加很多;低压侧接成三角形:励磁变低压侧一般电 压较低,大多不超过 1000V,正常运行时,变压器低压侧励磁电流很大,接成三 角形,相电流为线电流的 1/√3,绕组导线截面积要小,加工制作较容易,绕组的 制造成本可以降低很多。另外,也给 3 次谐波构成回路,起到保护发电机的作用。

1、高压侧 Y 接,相电压较低,可以降低为提高绝缘而付出的成本; 

2、低压侧角接,相电流较低,可以降低绕组截面积,降低成本;防三次谐波。
在变压器中都希望原、副边有一侧接成三角形,这是为了有一侧可以为三次 谐波电流提供回路从而可以保证感应电势为正弦波,避免产生畸变。而三角形联 结的绕组在原边或在副边所起的作用是一样的。但是为了节省绝缘材料,实际上 总是高压侧采用星形接法,低压侧采用三角形接法。因为高压侧在一定线电压下, 其相电压仅为线电压的 1/√3,而绝缘通常按相电压设计,所以用料较少。就是绝 缘层不用包那么厚(否则,圈数相同的情况下导线长度要增加)。相应的来说铁 芯不必因为绕组体积而做的大一些。并且主系统为大电流接地系统,也只能采用 高压侧星形接线方式。

       对于三相变压器组的接线方式,若采用星/星接线可引起相电势的波形严重 畸变,有可能引起绝缘击穿。 

D-D;Y-Y;D-Y;Y-D 这四种变压器用于什么场合有什么不同吗? 

另外比如一个 Y-Y 变压器下级再接一个 D-Y 变压器,那么 Y-Y 的 n 线能不 能和下级的 D-Y 变压器的 n 线接到一起?好像不对吧,该怎么处理这种情况?

Y 型因为有中性点可以接地,所以多用于为高压侧提供接地,也就是说:Y-D 一般做降压变压器, 

D-Y 一般做升压变压器,但是事实上很多配电变压器(属于降压变压器) 也采用 D-Y 接法,只是接地测变成了低压侧而已。 

D-D 的好处是在其中一组坏的情况下,可以将这组移去检修而保持另两足继 续工作只是容量变为原来的 58%, 

Y-Y 一般不采用,因为它没有谐波通路,会使变压器输出产生很大的畸变。 

       对于两级变压器的问题,比方说你们办公楼会有一个 10/0.4 的变压器供电, 它的 Y 测中性点是接地的,但是你需要将 400V 或者 380V 的电压变换成 110V 供给你的特殊设备,那么这个小变压器事实上的 n 线就是通过上一级的变压器 n 线而最终接地的

变压器接法 

       目前变压器的常用接法有 Y(星形)与 D(角形)两种,配电变压器也有采 用 Z 接法的。 

1).Y 接法的优点:
对高压绕组而言最经济; 可有中点可以利用;
允许直接接地或通过阻抗接地; 
允许降低中点的绝缘水平(即分级绝缘); 
可在每相中点处设分接头,分接开关也可位于中点处;
允许接单相负载,中点可载流。 

2).D 接法的优点: 
对大电流低压绕组而言最经济;
与 Y 接绕组配合使用时可以降低零序阻抗值。

3).Z 接法的优点: 
允许中点载流的负载且有较低的零序阻抗; 
可用作接地变压器的接法形成人工中点;
可降低系统中电压不平衡(系统中三相负载不平衡时);
可作多雷地区使用配电变压器的一种接法。

以上是单一接法的优点,一般变压器至少有两个绕组,因此变压器有几种接 法的组合。

(1) YNyn 和 OYN(YN 自耦接法) 零序电流会在绕组间转换,即高压与低压绕组都有零序电流,且能安匝平衡 以达到变压器有低的零序阻抗,对系统变压器而言,必须有 D 接平衡绕组与此 接法一并采用。

(2) YNy 和 Yyn 有中点引出的绕组中有零序电流,但在另一无中点引出的绕组无此电流,故 零序电流不能安匝平衡,故对铁心而言,有一个激磁零序电流,它受零序激磁阻 抗控制,根据磁路的设计,这一零序激磁阻抗可以较大(如三相三柱铁心)或特别 大(如三相五柱铁心、三相壳式铁心)。相对地电压的对称会受到影响,中点会偏 移,因此,这种接法不能用于三相五柱铁心、单相组成的三相组或三相壳式铁心 (见下面说明)。

(3)YNd,Dyn,YNyd 或 YNy+d +d 表示此绕组仅作平衡绕组用而不接负载。d 表示此绕组既作平衡绕组又可 接负载。在有中点引出的绕组中有零序电流时,在角接绕组有补偿此电流的循环电 流。零序阻抗是很低的,约等于绕组间正序短路阻抗。 

(4)Yzn 或 ZNy 在曲折接法绕组中的零序电流会在每个铁心柱上两个线圈中作安匝平衡,且 有低的零序阻抗值。不同接法的组合能否采用与铁心结构有关,常用的铁心有:单相铁心、三相三柱、三相五柱、三相壳式、三相七柱壳式等。

       对单相铁心组成的三相组变压器、三相五柱与各种壳式铁心三相变压器都不 能采用 Yyn、YNyn 接法。 

       三相三柱铁心变压器可以采用 Yyn、YNyn 接法。正序和负序磁通分量在铁 心中可成回络,而零序磁通从轭到轭通过外部空间形成回络,磁阻很高。当电压 中有零序分量时,就有较高激磁电流(因零序激磁阻抗较小,但阻抗是非线性的, 与零序电压分量有关)。 

       在单相铁心组成的三相组变压器、三相五柱与各种壳式铁心变压器中零序磁 通可在低磁阻的旁轭中通过,相当于正序电压有相当高的激磁阻抗。零序磁通不 能在旁轭中饱和。饱和后,电感下降,导致有尖顶畸变电流。对这些铁心,变压 器中应有一 D 接绕组。

       三相电压的变换可以用三只单相变压器或如图所示的三相变压器来完成.三 相变压器的工作原理和单相变压器是相同的.

       在三相变压器中,每一芯柱均绕有原绕组和副绕组,相当于一只单相变压器.三相 变压器高压绕组的始端常用 A,B,C,末端用 X,Y,Z 来表示。低压绕组则用 a,b,c 和 x,y,z 来表示.高低压绕组分别可以接成星形或三角行.在低压绕组输出为低电压, 大电流的三相变压器中(例如电镀变压器),为了减少低压绕组的导线面积,低压绕 组亦有采用六相星行或六相反星行接法。
售前客服
售后客服
选型方案
承装修试
24小时热线电话
15342214292